您好、欢迎来到现金彩票网!
当前位置:PC蛋蛋 > 总线隔离模式 >

如何使实时数据采集处理系统保持数据的高速传输

发布时间:2019-06-27 07:58 来源:未知 编辑:admin

  当前,越来越多的设计应用领域要求具有高精度的A/D转换和实时处理功能。在实时量的实时数据采集处理系统来说,保持数据高速传输也是该系统性能的关键因素。

  采用TMS320VC5402和转换器ADuC841构成双CPU处理器平台,充分利用TMS320VC5402的对大容量数据和复杂算法的处理能力,ADuC841接口的控制能力以及各自拥有的DMA控制器构建实时数据采集处理系统。双CPU通过DMA方式实现数据交换,将数据传输和系统控制分开,提高了数据传输速度,降低了处理器负担,提高系统运行效率。采用此解决方案。大大提高了系统的信号采集和处理能力。

  ADuC841是ADI公司ADuC84X系列中性能最完善的一款微转换器,它具有单周期指令,20MI/s的8052内核;内置一个8通道、高速420 Ks/s、高精度自校正、12位逐次逼近的ADC,具有DMA控制:2通道12位DAC;2通道PWM方式∑-△型DAC;片上15 ppm/℃高稳定电压基准;片上温度传感器;62 KB片内Flash/EE程序存储器;4 KB的片内Flash/EE数据存储器。还包括和电源.、ADC与数据存储器之间的DMA方式、存储保护功能、通用异步串行收发器UART)、SPII2C总线接口等功能模块。

  ADuC841片内的ADC的转换速率为2.38μs/次(420 kHz的采样率)。当A/D转换时,ADuC841必须在2μs内读取A/D转换结果并将其传输且存储到外部存储器中以便后续处理,否则将导致下一个转换结果出现后丢失前一个转换结果。由于中断服务子程序中存储转换结果和微转换器跳转到ADC的中断服务子程序都需要时间,因此很多应用无法响应高的中断速率。采用ADC的DMA方式传输数据能够解决上述问题,通过设置特殊功能寄存器ADCCON2中的中断响应位即可使能ADC的DMA方式。这种方式下,无需CPU的软件中断响应干预,可通过硬件直接检测相应控制位就能将ADC的转换结果直接输出并存储到片外的静态RAM中,并提供了一个高速数据传输通道,从而保证了ADC能以最高速率(420 kHz)完成数据采样和转换,并进行高速信号传输。

  TMS320VC5402 是TI公 司 的TMS320C5000系列之一,它采用改进的哈佛结构,具有分离的程序总线级流水线 MI/S,具有高速运行的特点。同时提供丰富的指令集,增强的模块化结构设计,具有通用性,拓展了应用领域。TMS320VC5402可寻址3个独立的存储空间,包括1 MB×16的程序空间,64 KB×16的数据空间以及64 KB×16位的I/O端口空间。片内提供16 KB×16的双存取RAM和4 KB×16的ROM,并具有直接存储器访问(DMA)功能,通过HOLD允许对外部程序、数据以及I/O空间进行直接存储器访问。TMS320VC5402存储器直接存储控制DMA可在不占用CPU资源的情况下,实现DSP存储器间数据的自由传输。TMS320VC5402有6个可独立编程的DMA通道,每个DMA通道由各自的寄存器控制。

  设计DMA共享存储器实现双机通讯需要考虑以下几点:(1)设计ADuC841和TMS320VC5402之间数据总线和地址总线的隔离电路。隔离电路在双CPU不通信时隔离地址总线和数据总线,而在DMA通信时则选通。(2)设计ADuC841和TMS320VC5402都能对存储器读写的选通信号和读写信号。(3)设计控制TMS320VC5402信号及其响应信号。

  考虑上述问题,采用ADuC841与TMS320VC5402的双CPU系统结构如图1所示。存储器HM62256既是TMS320VC5402的全局数据存储器,又是ADuC841的外部存储器。A15为片选信号,地址范围为8000H~FFFFH。两个CPU分别通过总线相连,实现存储器共享。

  隔离电路采用4片74LVC245双向缓冲器实现,由于ADuC841的P0口是分时复用的地址/数据总线端口的地址信号从地址/数据总线中分离出来。而ADuC841的16位数据总线需要双向缓冲,由于ADuC841要对HM62256进行读写操作,所以缓冲器的方向由ADuC841的读信号RD控制,当ADuC841读数据时,RD为低电平,使数据缓冲方向为HM62256至ADuC841;写数据时,RD为高电平,数据缓冲方向为ADuC841至HM62256。缓冲器的使能线为高电平时,选通缓冲器,否则缓冲器为高阻态。A15还是HM62256的片选信号,若要ADuC841和TMS320VC5402都能选通HM62256,需将A15和PS的与非信号作为HM62256的片选信号。ADuC841选通时,PS为高电平,ADuC841的A15有效。TMS320VC5402选通时,当A15为低电平时,PS有效。ADuC841通过P3.5、P3.2(INT0)分别与TMS320VC5402的HOLD、XF引脚相连,P3.5向TMS320VC5402申请总线的请求后,HOLDA信号变低,TMS320VC5402的CPU挂起,并出让外部总线打开总线驱动器,并经与非门后选中HM62256,获得HM62256的控制权,实现对HM62256的读写操作。而TMS320VC5402可通过XF向ADuC841请求中断,ADuC841在响应中断INT0后,通过P3.5将HOLD信号转换为高电平,此时总线系统软件设计

  系统上电时,ADuC841由P3.5向DSP申请总线,设置DMA方式,通过配置3个特殊功能寄存器ADCCON1~ADCCON3,ADuC841的ADC工作在不同模式下。其中在DMA模式下,ADC可连续转换,并将采样值直接输出并存储到片外的HM62256中而无需来自CPU的任何软件干预,从而保证ADC能以最高速度(420 kHz)完成采样和转换并进行高速信号传输。A/D转换后,ADuC841通过ADC中断,P3.5发送高电平至TMS320VC5402的HOLD引脚,向TMS320VC5402申请放弃总线的总线控制权重新交换给TMS320VC5402,由TMS320VC5402进行数据处理。当TMS320VC5402处理完数据后,首先将运算结果放回HM62256,然后通过XF

  对于实时数据采集处理系统,选取合理有效的核心算法是至关重要的,然而,选择数据传输方法也是相当重要,在一些实际情况下,数据传输时间可能超过数据处理的时间。通过合理使用DMA高速数据传输是提高数据传输效率的一种途径,有助于产品的开发。

  我们将《嵌入式工程师-系列课程》分成两大阶段:第一阶段:《计算机体系结构》课程 分成4篇:分别是

  我们将《嵌入式工程师-系列课程》分成两大阶段:第一阶段:《计算机体系结构》课程 分成4篇:分别是

  来自Spartan-3 XC3S1500-4FG320差分输出缓冲器的信号失真

  嗨, 我尝试使用下面的Spartan 3通用差分输出缓冲区将单端信号(SClk_P)转换为Diff信号: OBUFDS_SCLK_P:O...

  请问我使用的是C18编译器的微芯片ECAN.C和.H文件到底有没有清除缓冲区?

  任何人都知道,还是有可能清除罐缓冲器。我使用的是C18编译器的微芯片ECAN.C和.H文件…到底有没有清除缓冲区?杰森 ...

  东芝存储器控股公司近日宣布,董事会已经同意接受公司与三井住友银行(Sumitomo Mitsui B....

  CA51F551 系列芯片是基于 1T 8051 内核的 8 位微控制器,通常情况下,运行速度比传统....

  朱爱军,戴群亮 (1.桂林电子科技大学电子工程学院,广西壮族自治区桂林市 541004; 2.广西柳工机械股份有限公司,广西壮族自...

  本文档的主要内容详细介绍的是Atmega16寄存器的详细表格资料免费下载。1.PB5:8 位双向I/....

  用于采集监视区域的图像光信号,一般现在集成好的额摄像头都是直接转换成以太网信号输出,外部只需要接上网....

  你好,我有一个PIC18F46k80单片机的项目,它有一个内部EEPROM。每次我编译程序并运行(程序)应用程序,MPLAB X...

  IAM即将完成PSOC3(我的第一个主要项目)的创建者项目,并希望在发布之前使用一些闪存保护。在TRM或某个地方,闪存保护...

  我的摄像头模块,是ov7725的,模块知道fifo的缓冲器,用40cm的线连接啊,搞了几天,现在就是在显示器上有头像,但不是很清楚,我...

  摘要:介绍了一种DSP芯片内嵌DARAM的电路结构,详细分析了接口电路中各个模块的功能,包括地址译码电路,字线译码电路,...

  眼下的存储市场正处于多种技术路线并行迭代的关键时期。一方面,应用极为广泛的DRAM和NAND Fla....

  信息经过单线送出,因此从中央处理器到DSI820仅需连接一条线(....

  Teledyne激光雷达新应用 为《权力的游戏》提供3D数据采集和视觉效果

  据报道,Teledyne Technologies近日宣布,其旗下子公司Teledyne Optec....

  本文档的主要内容详细介绍的是三种基本组态放大电路的详细资料说明包括了:共发射极放大电路,共集电极放大....

  本文档的主要内容详细介绍的是中国电信物联网开放平台_NB-IoT 业务对接指导书资料免费下载。

  [tr]打算用line-in或者mic-in录制一段10s音频,然后再播放,这10s音频临时存储在ddr存储器,需要怎么编程,不是很懂。 [/tr][...

  随着这几年工业互联网的不断深入发展,大数据在工业领域的应用取得了可喜的巨大进步。然而,我们也应该看到....

  事实上,除了这些传统要求,在前两代非易失FPGA产品的经验基础上,莱迪思半导体(Lattice Se....

  本文档的主要内容详细介绍的是嵌入式系统教程之嵌入式处理器的详细资料说明包括了:1 硬件子系统的....

  实验内容与任务:根据所学知识,设计一套基于单片机控制的智能超声波测厚系统。基本要求为:(1)产生振动....

  SEMI(国际半导体产业协会)更新2019年第二季全球晶圆厂预测报告,下调了今年全球晶圆厂设备支出预....

  嗨, 我正在使用Spartan 6 FPGA,xc6slx25-3ftg256。 微控制器的一个OUput总线缓冲器看起来像这样 OBUF_inst_ad_o...

  AD215是一种高速输入隔离放大器,设计用于隔离和放大宽带模拟信号。AD215的创新电路和变压器设计....

  DAC7641是一个16位的电压输出数字模拟转换器(DAC),在规定的温度范围内保证15位的单调性能....

  TMS320C32是美国TI公司生产的一款浮点数字信号处理器(DSP),是TMS320系列浮点数字信号处理器的新产品,其CPU...

  大脑总质量只占人体体重的2%,却消耗了人体大约25%的氧气,如果将人看作是一个完整的机体,心脏可看做....

  单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器R....

  如今,随着移动互联网、云计算、智能终端等技术飞速发展,人类使用的数据量正以前所未有的速度爆炸式地急剧....

  介绍了一种具有自学习循路功能的轮式移动机器人模型的设计方法。该模型由两后轮作驱动轮来控制前进速度和方....

  工业互联网是在传统互联网的基础上建立起来的。这种演化是工业技术发展的必然趋势。传统互联网将人与人通过....

  本文档的主要内容详细介绍的是使用单片机进行电子称的设计资料合集免费下载包括了:1.设计开发原理说明(....

  语音播报,这个基本在任何行业都可能用得到,如:公交报站、仪器仪表播报语音信息等等。应用非常的广泛,大....

  本文档的主要内容详细介绍的是智能卡技术及应用的四个实验指导书资料免费下载包括了:实验一 存储器卡读写....

  本文档的主要内容详细介绍的是C++程序设计的基础知识初步了解C++的资料免费下载包括了:1 认识C....

  Vive Pro Eye首次亮相于2019年CES,Vive Pro Eye采用七鑫易维眼动追踪技术....

  VK1S68C是1/5~1/8 占空比的LED显示控制驱动电路。由10根段输出、4根栅输出、3根段/....

  中美贸易战下,存储器市场波动情形持续受关注,研调机构集邦科技近日举行“Compuforum 2019....

  纵观数字集成电路的发展历史,经历了从电子管、晶体管、小规模集成电路到大规模以及超大规模集成电路等不同....

  东芝推出XG6-P固态硬盘系列 XG6-P系列最高存储容量[2]可达2,048GB

  东芝存储器株式会社宣布推出XG6-P固态硬盘(SSD)系列,该系列为公司XG6系列的衍生系列。XG6....

  2019年第一季度世界存储器产品营收为271.24亿美元 下降26.8%

  2019年第一季度,世界存储器(DRAM和NAND)产品营收额为271.24亿美元,与2018年第四....

  本单片机开发应用技术综合实验实训装置由控制屏、实验桌组成,通过本实验台可完成单片机的接口扩展、数据采....

  采用德州仪器(TI)的TMS320VC54xx芯片作为主处理器(CPU),如5402、5409、54....

  本手册介绍ARM®V7指令集架构,包括其高代码密度Thumb®指令编码及其以下扩展:

  群联抢搭储存型快闪存储器(NAND Flash)需求爆发商机 ,今年在台北国际电脑展( Comput....

  2019将成为中国存储器发展的关键年,希望在强有力的政策支持下,加上国内厂商的不懈努力,中国存储器能....

  MCU,中文简称单片机。即将CPU、存储器(RAM和ROM)、多种I/O接口等集成在一片芯片上,形成....

  五月DRAM与NAND Flash价格持续滑落5-10%,第三季跌幅可望收敛

  智能型手机和笔记本计算机市场需求疲软的情况持续,五月份内存和闪存价格持续滑落,客户端的库存去化速度不....

  三星 K9F1GXXX0M 提供了 128M*8Bit/64M*16Bit 的存储容量,另外还有 3....

  本文档的主要内容详细介绍的是工业控制计算机基本构造原理的详细资料说明。

  2017年12月,习总书记在中央政治局第二次集体学习时强调,要深入实施工业互联网创新发展战略,系....

  本文档的主要内容详细介绍的是51单片机汇编语言教程之单片机逻辑与或异或指令的详细资料讲解。

  在51系列单片机中,与外部存储器RAM 打交道的只能是A 累加器。所有需要传送入外部RAM 的数据必....

  上两次我们做过两个实验,都是让P1.0 这个管脚使灯亮,我们能设想:既然P1.0 能让灯亮,那么其它....

  应用方案:用美国NI 公司LabVIEW 系统开发平台、先进的PXI 测量和数据采集技术和压力传感器....

  我们来思考一个问题,当我们在编程器中把一条指令写进单片要内部,通电后,单片机就可以执行这条指令,那么....

  STM32F105xx和STM32F107xx系列微控制器的数据手册免费下载

  STM32F105xx和STM32F107xx互联型系列使用高性能的ARM® Cortex™-M3 ....

  2018年8月,金蝶软件正式对外发布了“烁金”工业互联网平台,布局新一代的自主可控的工业云操作系统。

  科技公司Kathrein Solutions和Tonnjes合作利用Kathrein的读写器和软件平....

  据介绍,尽管有一些周期性和季节性影响,但是独立存储器市场在过去十年中经历了非凡的增长。这是由重要的行....

  信息优势和特点 四通道、64位分辨率 1 kΩ, 10 kΩ, 50 kΩ, 100 kΩ 非易失性存储器1 存储游标设置,并具有写保护功能 上电恢复至EEMEM设置,刷新时间典型值为300 µs EEMEM重写时间:540 µs(典型值) 电阻容差存储在非易失性存储器中 EEMEM提供12个额外字节,可存储用户自定义信息 I2C兼容型串行接口 直接读写RDAC2 和EEMEM寄存器 预定义线性递增/递减命令 预定义±6 dB阶跃变化命令 欲了解更多信息,请参考数据手册产品详情AD5253/AD5254分别是64/256位、四通道、I2C®, 采用非易失性存储器的数字控制电位计,可实现与机械电位计、调整器和可变电阻相同的电子调整功能。AD5253/AD5254具有多功能编程能力,可以提供多种工作模式,包括读写RDAC和EEMEM寄存器、电阻的递增/递减、电阻以±6 dB的比例变化、游标设置回读,并额外提供EEMEM用于存储用户自定义信息,如其它器件的存储器数据、查找表或系统识别信息等。主控I2C控制器可以将任何64/256步游标设置写入RDAC寄存器,并将其存储在EEMEM中。存储设置之后,系统上电时这些设置将自动恢复至RDAC寄存器;也可以动态恢复这些设置。在同步或异步通...

  AD5254 四通道、256位、 I2C 、非易失性存储器、数字电位计

  信息优势和特点 四通道、256位分辨率 1 kΩ, 10 kΩ, 50 kΩ, 100 kΩ 非易失性存储器1存储游标设置,并具有写保护功能 上电恢复为EEMEM设置,刷新时间典型值为300 µs EEMEM重写时间:540 µs(典型值) 电阻容差存储在非易失性存储器中 EEMEM提供12个额外字节,可存储用户自定义信息 I2C兼容型串行接口 直接读/写RDAC2 和EEMEM寄存器 预定义线性递增/递减命令 预定义±6 dB阶跃变化命令 欲了解更多特性,请参考数据手册产品详情AD5253/AD5254分别是64/256位、四通道、I2C®, 采用非易失性存储器的数字控制电位计,可实现与机械电位计、调整器和可变电阻相同的电子调整功能。AD5253/AD5254具有多功能编程能力,可以提供多种工作模式,包括读写RDAC和EEMEM寄存器、电阻的递增/递减、电阻以±6 dB的比例变化、游标设置回读,并额外提供EEMEM用于存储用户自定义信息,如其它器件的存储器数据、查找表或系统识别信息等。主控I2C控制器可以将任何64/256步游标设置写入RDAC寄存器,并将其存储在EEMEM中。存储设置之后,系统上电时这些设置将自动恢复至RDAC寄存器;也可以动态恢复这些设置。在同步或异步通...

  信息优势和特点 非易失性存储器可保存游标设置 电阻容差存储在非易失性存储器中 1 k Ω, 10 k Ω, 50 k Ω 100 k Ω I2C 兼容型串行接口 游标设置回读功能 线性递增/递减预定义指令 ±6 dB对数阶梯式递增/递减预定义指令 单电源:2.7 V至5.5 V 逻辑操作电压:3 V至5 V 上电复位至EEMEM设置,刷新时间小于1 ms 非易失性存储器写保护 数据保留期限:100年(典型值, TA = 55°C )产品详情AD5252是一款双通道、数字控制可变电阻(VR),具有256位分辨率。它可实现与电位计或可变电阻相同的电子调整功能。该器件通过微控制器实现多功能编程,可以提供多种工作与调整模式。在直接编程模式下,可以从微控制器直接加载RDAC寄存器的预设置。在另一种主要工作模式下,可以用以前存储在EEMEM寄存器中的设置更新RDAC寄存器。当更改RDAC寄存器以确立新的游标位时,可以通过执行EEMEM保存操作,将该设置值保存在EEMEM中。一旦将设置保存在EEMEM寄存器之后,这些值就可以自动传输至RDAC寄存器,以便在系统上电时设置游标位。这种操作由内部预设选通脉冲使能;也可以从外部访问预设值。基本调整模式就是在游标位设置(RDAC)寄...

  信息优势和特点 非易失性存储器保存游标设置 电阻容差存储在非易失性存储器中 1 k Ω, 10 k Ω, 50 k Ω 100 k Ω I2C 兼容型串行接口 游标设置回读功能 线性递增/递减预定义指令 ±6 dB对数阶梯式递增/递减预定义指令 单电源:2.7 V至5.5 V 逻辑操作电压:3 V至5 V 上电复位至EEMEM设置,刷新时间小于1 ms 非易失性存储器写保护 数据保持能力:100年(典型值,TA = 55°C )产品详情AD5251是一款双通道、数字控制可变电阻(VR),具有64位分辨率。它可实现与电位计或可变电阻相同的电子调整功能。该器件通过微控制器实现多功能编程,可以提供多种工作与调整模式。在直接编程模式下,可以从微控制器直接加载RDAC寄存器的预设置。在另一种主要工作模式下,可以用以前存储在EEMEM寄存器中的设置更新RDAC寄存器。当更改RDAC寄存器以确立新的游标位时,可以通过执行EEMEM保存操作,将该设置值保存在EEMEM中。一旦将设置保存在EEMEM寄存器之后,这些值就可以自动传输至RDAC寄存器,以便在系统上电时设置游标位。这种操作由内部预设选通脉冲使能;也可以从外部访问预设值。基本调整模式就是在游标位设置(RDAC)寄存器...

  信息优势和特点 双通道、1024位分辨率 标称电阻:25 kΩ、250 kΩ 标称电阻容差误差:±8%(最大值) 低温度系数:35 ppm/°C 2.7 V至5 V单电源或±2.5 V双电源 SPI兼容型串行接口 非易失性存储器存储游标设置 加电刷新EEMEM设置 永久性存储器写保护 电阻容差储存于EEMEM中 26字节额外非易失性存储器,用于存储用户定义信息 1M编程周期 典型数据保留期:100年 下载AD5235-EP数据手册 (pdf) 温度范围:-40℃至+125°C 受控制造基线 一个装配/测试厂 一个制造厂 增强型产品变更通知 认证数据可应要求提供 V62/11605 DSCC图纸号产品详情AD5235是一款双通道非易失性存储器1、数控电位计2,拥有1024阶跃分辨率,保证最大低电阻容差误差为±8%。该器件可实现与机械电位计相同的电子调整功能,而且具有增强的分辨率、固态可靠性和出色的低温度系数性能。通过SPI®-兼容串行接口,AD5235具有灵活的编程能力,支持多达16种工作模式和调节模式,其中包括暂存编程、存储器存储和恢复、递增/递减、±6 dB/阶跃对数抽头调整和游标设置回读,同时提供额外的EEMEM1 ,用于存储用户定义信息,如其他元件的存储器数据、查找表、系统标识信息等。...

  信息优势和特点 1024位分辨率 非易失性存储器保存游标设置 上电时利用EEMEM设置刷新 EEMEM恢复时间:140 µs(典型值) 完全单调性工作 端接电阻:10 kΩ、50 kΩ、100 kΩ 永久存储器写保护 游标设置回读功能 预定义线性递增/递减指令 预定义±6 dB/步对数阶梯式递增/递减指令 SPI®兼容型串行接口 3 V至5 V单电源或±2.5 V双电源供电产品详情AD5231是一款采用非易失性存储器*的数字控制电位计**,提供1024阶分辨率。它可实现与机械电位计相同的电子调整功能,而且具有增强的分辨率、固态可靠性和遥控能力。该器件功能丰富,可通过一个标准三线式串行接口进行编程,具有16种工作与调整模式,包括便笺式编程、存储器存储与恢复、递增/递减、±6 dB/步对数阶梯式调整、游标设置回读,并额外提供EEMEM用于存储用户自定义信息,如其它器件的存储器数据、查找表或系统识别信息等。在便笺式编程模式下,可以将特定设置直接写入RDAC寄存器,以设置端子W–A与端子W–B之间的电阻。此设置可以存储在EEMEM中,并在系统上电时自动传输至RDAC寄存器。EEMEM内容可以动态恢复,或者通过外部PR选通脉冲予以恢复;WP功能则可保护EE...

  信息LCX06包含六个反相器/缓冲器。 输入容许电压达7V,允许5V系统到3V系统的连接。 LCX06的输出为漏极开路,能连接至其他漏极开路输出以实现低电平有效线AND或高电平有效线采用先进的CMOS技术制造,以在实现高速运行的同时保持CMOS低功耗。 5V容许输入电压 提供2.3V-3.6V V规格 3.7 ns t最大值(V = 3.3V),10 µA I最大值 掉电高阻抗输入和输出 24 mA输出驱动(V= 3.0V) 实施专利噪声/电磁干扰(EMI)消减电路 闩锁性能超过500 mA 与74系列05功能兼容 静电放电(ESD)性能: 人体模型

  2000V 机械模型

  信息LCX07包含六个缓冲器。 输入容许电压达7V,允许5V系统到3V系统的连接。 LCX07的输出为漏极开路,能连接至其他漏极开路输出实现高电平线与功能或低电平线采用先进的CMOS技术制造,以在实现高速运行的同时保持CMOS低功耗。 5V容许输入电压 提供2.3V到5.5V V规格 2.9 ns t最大值(V = 3.3V),10 µA I最大值 掉电高阻抗输入和输出 ±24 mA输出驱动(V= 3.0V) 实施专利噪声/电磁干扰(EMI)消减电路 闩锁性能超越JEDEC 78条件 静电放电(ESD)性能: 人体模型

  2000V 机械模型

  74ALVC16244 低电压1.8 / 2.5 / 3.3V 16位缓冲器

  信息 74ALVC16244是一款高级性能的非反相16位缓冲器。它专为1.8 V,2.5 V或3.3 V系统中的高速,低功耗工作而设计。 74ALVC16244采用半字节控制,每个半字节功能相同但独立。控制引脚可连接在一起获得完整的16位操作。 3态输出由每个半字节的输出使能(OEnbar)输入控制。当(OEnbar)为低电平时,输出开启。当(OEnbar)为高电平时,输出处于高阻态。 设计用于低电压操作:V = 1.65-3.6 V 3.6 V容差输入和输出 高速操作 静态驱动 支持实时插入和退出 当V = 0 V时,IOFF规范保证高实现 所有三种逻辑状态(40μA)的近零静态电源电流 闩锁性能在125°C时超过±250 mA ESD性能:人体模型≥2000V;机器型号≥200V 符合行业标准的第二来源74ALVC16244...

  74ACT541 八路缓冲器/线为八通道缓冲器/线路驱动器,设计用于内存和地址驱动器、时钟驱动器以及总线导向发射器/接收器。 这些器件在功能上与AC240相似,同时提供流通架构(输入在与输出相反的一端)。 这种引脚排列使得这些器件特别适合用作微处理器的输出端口,可实现轻松布局并获得更大的PC板密度。 I和I降低50% 3态输出 输出和输出在封装相反的两侧,更易于与微处理器接口 24 mA输出源电流/灌电流 74AC541是74AC540的一款同相选项 74ACT541具有TTL兼容输入...

  信息AC/ACT244是一款八通道缓冲器和线路驱动器,设计用作存储器地址驱动器、时钟驱动器以及可提高印刷电路板密度的总线式发送器或接收器。 I和I降低50% 3态输出驱动总线线路或缓冲存储器地址寄存器 24 mA输出源电流/灌电流 ACT244具有TTL兼容输入

  信息AC/ACT240是一款八通道缓冲器和线路驱动器,设计用作存储器地址驱动器、时钟驱动器以及可提高印刷电路板密度的总线导向发射器或接收器。 I和I降低50% 反相3态输出驱动总线线路或缓冲存储器地址寄存器 24 mA输出源电流/灌电流 ACT240具有TTL兼容输入

  74AC540 八路缓冲器/线为八通道缓冲器/线路驱动器,设计用于内存和地址驱动器、时钟驱动器以及总线导向发射器/接收器。 这些器件在功能上与AC240相似,同时提供流通架构(输入在与输出相反的一端)。 这种引脚排列使得这些器件特别适合用作微处理器的输出端口,可实现轻松布局并获得更大的PC板密度。 I和I降低50% 3态反相输出 输出和输出在封装相反的两侧,更易于与微处理器接口 24 mA输出源电流/灌电流...

  74AC541 八路缓冲器/线为八通道缓冲器/线路驱动器,设计用于内存和地址驱动器、时钟驱动器以及总线导向发射器/接收器。 这些器件在功能上与AC240相似,同时提供流通架构(输入在与输出相反的一端)。 这种引脚排列使得这些器件特别适合用作微处理器的输出端口,可实现轻松布局并获得更大的PC板密度。 I和I降低50% 3态输出 输出和输出在封装相反的两侧,更易于与微处理器接口 24 mA输出源电流/灌电流 74AC541是74AC540的一款同相选项 74ACT541具有TTL兼容输入...

  信息AC/ACT240是一款八通道缓冲器和线路驱动器,设计用作存储器地址驱动器、时钟驱动器以及可提高印刷电路板密度的总线导向发射器或接收器。 I和I降低50% 反相3态输出驱动总线线路或缓冲存储器地址寄存器 24 mA输出源电流/灌电流 ACT240具有TTL兼容输入

  信息AC/ACT244是一款八通道缓冲器和线路驱动器,设计用作存储器地址驱动器、时钟驱动器以及可提高印刷电路板密度的总线式发送器或接收器。 I和I降低50% 3态输出驱动总线线路或缓冲存储器地址寄存器 24 mA输出源电流/灌电流 ACT244具有TTL兼容输入

  CAT25128 128-kb SPI串行CMOS EEPROM存储器

  信息 CAT25128是一个128 kb串行CMOS EEPROM器件,内部组织为16kx8位。它具有64字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()输入启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25128设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。片上ECC(纠错码)使该器件适用于高可靠性应用。适用于新产品(Rev. E) ) 20 MHz SPI兼容 1.8 V至5.5 V操作 硬件和软件保护 低功耗CMOS技术 SPI模式(0,0和1,1) 工业和扩展温度范围 自定时写周期 64字节页写缓冲区 块写保护 - 保护1 / 4,1 / 2或全部EEPROM阵列 1,000,000编程/擦除周期 100年数据保留

  8引脚PDIP,SOIC,TSSOP和8焊盘TDFN,UDFN封装 此器件无铅,无卤素/ BFR,符合RoHS标准 具有永久写保护的附加标识页...

  CAT25256 256-kb SPI串行CMOS EEPROM存储器

  信息 CAT25256是一个256 kb串行CMOS EEPROM器件,内部组织为32kx8位。它具有64字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()输入启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。输入可用于暂停与CAT25256设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。片上ECC(纠错码)使该器件适用于高可靠性应用。适用于新产品(Rev. E) ) 20 MHz(5 V)SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0)和(1,1) ) 64字节页面写缓冲区 具有永久写保护的附加标识页(新产品) 自定时写周期 硬件和软件保护 100年数据保留 1,000,000编程/擦除周期 低功耗CMOS技术 块写保护

  - 保护1 / 4,1 / 2或整个EEPROM阵列 工业和扩展温度范围 8引脚PDIP,SOIC,TSSOP和8焊盘UDFN和TDFN封装 此器件无铅,无卤素/ BFR,符合RoHS标准...

  信息 CAT25040是一个4-kb SPI串行CMOS EEPROM器件,内部组织为512x8位。安森美半导体先进的CMOS技术大大降低了器件的功耗要求。它具有16字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25040设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 20 MHz(5 V)SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0和1,1) 16字节页面写入缓冲区 自定时写入周期 硬件和软件保护 块写保护 - 保护1 / 4,1 / 2或整个EEPROM阵列 低功耗CMOS技术 1,000,000编程/擦除周期 100年数据保留 工业和扩展温度范围 PDIP,SOIC,TSSOP 8引脚和TDFN,UDFN 8焊盘封装 这些器件无铅,无卤素/ BFR,符合RoHS标准...

  信息 CAT25080 / 25160是8-kb / 16-kb串行CMOS EEPROM器件,内部组织为1024x8 / 2048x8位。它们具有32字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()输入启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25080 / 25160设备的任何串行通信。这些器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 10 MHz SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0和1,1) 32字节页写缓冲区 自定时写周期 硬件和软件保护 块写保护 - 保护1 / 4,1 / 2或全部EEPROM阵列 低功耗CMOS技术 1,000,000个编程/擦除周期 100年数据保留 工业和扩展温度范围 符合RoHS标准的8引脚PDIP,SOIC,TSSOP和8焊盘TDFN,UDFN封装...

http://erginmurat.com/zongxiangelimoshi/200.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有